IN THE PRESS
- 08/12/2015 - El Mundo (B@leópolis): Las ondas gravitacionales, en caza y captura
- 03/12/2015 - DICYT: 2016 será un gran año en la búsqueda de las ondas gravitacionales
- 23/11/2015 - La fábrica de la ciencia: Ondas gravitacionales,la música del Cosmos
- 19/11/2015 - SINC: A la caza de ondas gravitacionales
- 06/11/2015 - El Cultural: Los investigadores, ante las claves del universo
- 12/09/2015 - BALEARS FA CIÈNCIA (IB3Ràdio): La teoria de la relativitat i les ones gravitacionals Entrevista a les 12h, minut 22:50
- 10/09/2015 - El Mundo (B@leópolis): Una nueva ventana al universo
- 01/09/2015 - CPAN: LISA Pathfinder, en el camino al lanzamiento
- 26/06/2015 - Hipertextual: Este es el reto más importante de la física de la próxima década
- 2/12/2014 - El Mundo (B@leópolis): La banda de los agujeros negros
- 16/11/2014 - Diario de Mallorca: Ciencia en las estrellas del cine
- 1/04/2014 - El Mundo (B@leópolis): La primera foto del universo
- 1/02/2014 - Investigación y ciencia: Seísmos y ondas gravitacionales
- Investigación y Ciencia, February 2014
- 25/11/2009 - SINC: El universo busca la conciliación
- Campus Obert: Física después del bosón de Higgs
- Campus Obert: Intentando escuchar el Universo
- LIGO Flyer: Searching for continuous gravitational wave signals with the Hough transform
- Diario de Mallorca: "Europa destaca una recerca del Grup de Relativitat y Gravitació de la UIB"
- Prace Report 2012
- El Mundo (B@leópolis): "Sinfonía del universo en clave 2.0"
- Cadena Ser (A vivir que son dos días Baleares): Interview
- Diario de Mallorca: "A la recerca dels sons de l'univers"
- El Mundo (B@leópolis): "Relatividad y agujeros negros, contados para todos los públicos"
- ABC: "Una web sobre la relatividad de la UIB gana premio nacional de divulgación"
- Última Hora Column: "Einstein y las enanas blancas"
- Última Hora Column: "Sorprendente Convivencia"
- IB3 Radio Interview: "Descubierto el planeta extrasolar más cercano a la Tierra"
- Diario De Mallorca: "Los GPS tienen en cuenta la Teoría de la Relatividad para fijar la posición"
- Diari De Balears: "¿Hem trobat la partícula de Déu?"
- Diario de Mallorca: "Descubren la partícula que podría explicar el origen del universo"
- RNE Interview: "97 años de teoría de la relatividad"
- El Mundo News: "A la búsqueda del lado más oscuro del Universo"
- Última Hora Column: "Al acecho de la partícula divina"
- Última Hora Column: "Neutrinos con Prisa"
- Diario de Mallorca News: "Superordenadores al alcance de la UIB"
- ABC Interview: "Somos el único grupo español que participa en el proyecto LIGO"
- IB3 TV Interview: "La UIB millora la recerca dels forats negres"
- ABC News: "La UIB desarrolla un método para la detección de los agujeros negros"
- El Mundo News: "Científicos de Barcelona y Baleares participarán en rediseño del observatorio espacial LISA"
Seguir @UIBGRG
Two new articles accepted in the journal Physical Review D
18 September, 2015
Two new works written in collaboration with the relativity group at the Cardiff University have been accepted for publication by the journal Physical Review D (accessible for free at http://arxiv.org/abs/1508.07250 and http://arxiv.org/abs/1508.07253).
- S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. Jiménez Forteza, A. Bohé: Frequency-domain gravitational waves from non-precessing black-hole binaries. I. New numerical waveforms and anatomy of the signal.
- S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, A. Bohé: Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era.
These two papers constitute the latest result of our long-term program to describe the gravitational wave (GW) signals emitted during the inspiral and coalescence of the BHs due to radiation reaction. Like BHs, GWs are predictions of Einstein’s general relativity, generated as massive compact bodies dynamically distort the surrounding spacetime. Since September 2015 a new generation of GW observatories based on kilometer-scale laser interferometers is listening to tremors of the space-time geometry, generated by cosmic catastrophies like the collision and merger of two black holes. However, the efficient detection and identification (e.g. the distinction of BHs from neutron stars) of such events relies on accurate waveform models computed within general relativity, which can then be used in a matched filter analysis. For massive BH-BH systems, for which the merger is in band of the detectors, and post-Newtonian perturbative methods are insufficient to provide waveform templates the full Einstein equations need to be solved numerically for selected cases, Waveform models need to be synthesised from numerical and perturbative results, and appropriately interpolated over the 7-dimensional parameter space of mass ratio and spins. This is the goal of our work. Without a detailed modelling of the late inspiral and merger of binary BHs, advanced detectors are unlikely to unfold their full scientific potential, and the possibility of learning from GW observations about stellar evolution, binary populations, and the validity of general relativity will be limited by insufficient theoretical knowledge. However, solving the Einstein equations numerically for the last ten or more orbits of a BH coalescence is numerically expensive, and requires up to several hundred thousand CPU hours for BHs with significant difference in masses or large spins.
The ultimate goal of this work is to construct a waveform model that is sufficiently accurate for detection and parameter estimation for design sensitivity advanced gravitational wave detectors before they come online, and to develop a detailed quantitative understanding of the parameter space and its degeneracies. To this end, over the past few years, we have been carrying out some of the first systematic parameter studies of the gravitational wave signal and other physical properties of coalescing black hole binaries in general relativity, and have established a program of “phenomenological waveform modeling” to construct an increasingly sophisticated series of models, exploring a hierarchy of “principal directions” in the parameter space. Following a model for non-spinning waveforms, we have produced the first analytical model for spinning inspiral-merger-ringdown waveforms, which has been calibrated to numerical solutions of the full Einstein equations [Ajith et al., Phys. Rev. Lett. 106:241101,2011]. A key idea of this model is that for detection and very rough parameter estimation purposes, a single effective spin parameter is sufficient, and the orthogonal direction (essentially the difference in spins) can be neglected. We have recently tested this assumption in more detail [Pürrer+, Phys.Rev.D 88 064007 (2013)], leading to the adoption of a modified effective spin as suggested by [Ajith, Phys. Rev. D 84, 084037 (2011)].